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ANNOTATION: In this paper we study the construction of a general solution to one class of 

difference equations of the following form 

 𝑥(𝑡 + 𝑛) + 𝑎1(𝑡)𝑥(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝑥(𝑡) = 𝑓(𝑡),  
where t are known functions of variable t, known functions of variable t, unknown function. ∈

𝑅 = (−∞, +∞),  𝑎𝑖(𝑡), 𝑖 = 1, … 𝑛𝑎𝑛(𝑡) ≠ 0, 𝑡 ∈ 𝑅), 𝑓(𝑡) − 𝑥(𝑡) − 

Keywords: general, difference, solution, particular solution, general solution, difference 

equation. 

 Consider an equation of the form 

(1)𝑥(𝑡 + 𝑛) + 𝑎1(𝑡)𝑥(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝑥(𝑡) = 𝑓(𝑡) , 
where , , are known functions of the variable , the unknown function is called a linear 

inhomogeneous difference equation of order.𝑡 ∈ 𝑅 = (−∞, +∞)𝑎𝑖(𝑡), 𝑖 =
1 , … , 𝑛𝑓(𝑡)– 𝑡𝑥(𝑡)– 𝑛 − 

Using the method of sequential integration, it is possible, as in the case of a homogeneous 

equation [3], to construct various kinds of partial solutions to equation (1). 

 Theorem. Let there be some solution to equation (1). Then the general solution of the 

inhomogeneous equation (1) is the sum of the general solution of the corresponding homogeneous 

equation (1) and .𝛾(𝑡) −  𝛾(𝑡) 

Proof. Because 

𝛾(𝑡 + 𝑛) + 𝑎1(𝑡)𝛾(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝛾(𝑡) ≡ 𝑓(𝑡) , 
then assuming in (1) 

                                             𝑥(𝑡) = 𝑦(𝑡) + 𝛾(𝑡), (2) 

we get 

 𝑦(𝑡 + 𝑛) + 𝑎1(𝑡)𝑦(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝑦(𝑡) + 

                     + 𝛾(𝑡 + 𝑛) + 𝑎1(𝑡)𝛾(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝛾(𝑡) ≡ 𝑓(𝑡), 

It follows that the function is indeed a solution to equation (1).𝑥(𝑡) = 𝑦(𝑡) + 𝛾(𝑡) 

 Let us now show that function (2) is a general solutionequation (1). To do this, take 

any solution to equation (1) and consider the difference𝑥(𝑡) 

𝑥(𝑡) −  𝛾(𝑡). This difference is the solution to the corresponding homogeneous equation 

. (3)𝑦(𝑡 + 𝑛) + 𝑎1(𝑡)𝑦(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝑦(𝑡) = 0 

Really, 
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𝑥(𝑡 + 𝑛) −  𝛾(𝑡 + 𝑛) + 𝑎1(𝑡)[𝑥(𝑡 + 𝑛 − 1) − 𝛾(𝑡 + 𝑛 − 1)] + ⋯ + 𝑎𝑛(𝑡)[𝑥(𝑡) − 𝛾(𝑡)]
= 𝑥(𝑡 + 𝑛) −  𝛾(𝑡 + 𝑛) + 

+𝑎1(𝑡)𝑥(𝑡 + 𝑛 − 1) − 𝑎1(𝑡)𝛾(𝑡 + 𝑛 − 1) + ⋯ +𝑎𝑛(𝑡)𝑥(𝑡) − 

−𝑎𝑛(𝑡)𝛾(𝑡) =  𝑥(𝑡 + 𝑛) + 𝑎1(𝑡)𝑥(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝑥(𝑡) − 

−[𝛾(𝑡 + 𝑛) + 𝑎1(𝑡)𝛾(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝛾(𝑡)] = 𝑓(𝑡) − 𝑓(𝑡) = 0 

This means that the difference can be written as𝑥(𝑡) −  𝛾(𝑡) 

,𝑥(𝑡) −  𝛾(𝑡) = ∑ 𝜔𝑖
0(𝑡)𝑦𝑖(𝑡)𝑛

𝑖=1  

Where 

, (4)𝑥(𝑡) =  𝛾(𝑡) + ∑ 𝜔𝑖
0(𝑡)𝑦𝑖(𝑡)𝑛

𝑖=1  

where , determination of the value of periodic period 1 functions. So, any solution to equation 

(1) is obtained from formula (2) with the appropriate selection of arbitrary periodic functions , , of 

period 1, i.e., function (2) is a general solution to equation (1).𝜔𝑖
0(𝑡)𝑖 = 1 , … , 𝑛 − 𝑥(𝑡) 𝜔𝑖

0(𝑡)𝑖 =
1 , … , 𝑛 

  Thus, the problem of constructing a general solution to the inhomogeneous equation (1) 

is reduced to constructing a general solution to the homogeneous equation (3), i.e., to find a general 

solution to the linear inhomogeneous equation (1), you need to find a general solution to the 

corresponding homogeneous equation and some particular solution of a non-homogeneous equation. 

The theorem has been proven. 

 Let us now consider one class of linear homogeneous difference equations of order for 

which a general solution can be constructed. Namely, consider the equation 𝑛 −  
                              𝑥(𝑡 + 𝑛) + 𝑎1(𝑡)𝑥(𝑡 + 𝑛 − 1) + ⋯ + 𝑎𝑛(𝑡)𝑥(𝑡) = 0(5) 

under the assumption that the functions , are continuous and periodic. Then, to construct a 

general continuous solution, it is sufficient, according to Theorem 1 in [3], to find particular 

continuous solutions for which the condition is satisfied𝑎𝑖(𝑡)𝑖 = 1, … , 𝑛 ,1 −  𝑛𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑛 , 

. (6)𝒲(t) = |

x1(t)                 x2(t)     …         xn(t)

x1(t + 1)       x2(t + 1) …      xn(t + 1)
… … … … … … … … … … … … … … … … .

x1(t + n − 1)       x2(t + n − 1) … xn(t + n − 1)      

|  ≠ 0 

 

We construct these solutions as follows. 

Substituting into (5) the expression 

                                                𝑥(𝑡) = 𝜆𝑡(𝑡)(7) 

where ) is some as yet undefined continuous and is a periodic function𝜆(𝑡1 

() for ) , we get 𝜆(𝑡 ≠ 0𝑡 ∈ 𝑅 

𝜆𝑡(𝑡)[𝜆𝑛(𝑡 + 𝑛) + 𝑎1(𝑡)𝜆𝑛−1(𝑡) + ⋯ + 𝑎𝑛−1(𝑡)𝜆(𝑡) + 𝑎𝑛(𝑡)] = 0 

Since ), it follows from the last relation that the function will be a solution to equation (5) only 

in the case when the function ) satisfies the characteristic equation𝜆(𝑡 ≠ 0𝜆𝑡(𝑡)𝜆(𝑡 

         𝜆𝑛(𝑡 + 𝑛) + 𝑎1(𝑡)𝜆𝑛−1(𝑡) + ⋯ + 𝑎𝑛−1(𝑡)𝜆(𝑡) + 𝑎𝑛(𝑡) = 0. (8) 

Let us denote , the roots of equation (8) and assume , , t. (Note that since the roots of equation 

(8) continuously depend on the coefficients , and the functions are continuous and periodic, then the 

functions are also continuous and periodic). Then, by virtue of (7), each , corresponds to a 

solution𝜆𝑖(𝑡)𝑖 = 1, … , 𝑛 − 𝜆𝑖(𝑡) ≠ 𝜆𝑗(𝑡)𝑖, 𝑗 = 1, … , 𝑛 ∈ 𝑅 𝑎𝑖(𝑡), 𝑖 = 1 , … , 𝑛 1𝜆𝑖(𝑡) , 𝑖 =

1 , … , 𝑛1𝜆𝑖(𝑡), 𝑖 = 1 , … , 𝑛 

,𝑥𝑖(𝑡) = 𝜆𝑖
𝑡(𝑡)𝑖 = 1 , … , 𝑛 . 

(9) 

 Let's show thatfunction (9) satisfies the condition 
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𝒲(t) = |

x1(t)                 x2(t)     …         xn(t)

x1(t + 1)       x2(t + 1) …      xn(t + 1)
… … … … … … … … … … … … … … … … .

x1(t + n − 1)       x2(t + n − 1) … xn(t + n − 1)      

|  ≠ 0, 

i.e., condition (6). 

Indeed, since 

𝒲(t) = ||

λ1
t (t)   λ2

t (t) … λn
t (t)

λ1
t+1(t)   λ2

t+1(t) … λn
t+1

… … … … … … … … … … .
λ1

t+n−1(t)  λ2
t+n−1(t) … λn

t+n−1(t)

|| == [λ1(t) … λn(t)]t |

1        1   …    1       
λ1(t)     λ2(t)    …    λn(t)
… … … … … … … … … … … .

λ1
n−1(t)  λ2

n−1(t) …   λn
n−1(t)

| = 

= [λ1(t) … λn(t)]t ∏ (λi(t) − λj(t))1≤j<i≤n , 

then when 𝒲(t) ≠ 0𝑡 ∈ 𝑅.From here, according to Theorem 2 in [3], the general solution of 

equation (5) has the form 

,𝑥(𝑡) = ∑ 𝜆𝑖
𝑡(𝑡)𝜔𝑖(𝑡)𝑛

𝑖=1  

where arbitrary continuous are periodic functions.  𝜔𝑖(𝑡), 𝑖 = 1, … , 𝑛–  1 

 If amongroots are equal, then it is easy to show that the corresponding solutions (9) do 

not satisfy the conditionλ1(t) … λn(t) 

𝒲(t) = |

x1(t)                 x2(t)      …         xn(t)

x1(t + 1)       x2(t + 1) …      xn(t + 1)
… … … … … … … … … … … … … … … … .

x1(t + n − 1)       x2(t + n − 1) … xn(t + n − 1)      

|  ≠ 0 , 

i.e., condition (6). 

In this case, partial solutions satisfying condition (6) have the following 

form𝑛 𝑥1(𝑡), 𝑥2(𝑡) , … , 𝑥𝑛(𝑡)  
𝜆𝑖

𝑡(𝑡),   𝑡𝜆𝑖
𝑡(𝑡) , … ,,𝑡𝑝𝑖−1𝜆𝑖

𝑡(𝑡)𝑖 = 1 , … , 𝑘 < 𝑛 , 
where , , are the multiplicities of roots , . This can be proven in a manner similar to how it was 

done in the first case.𝑝𝑖𝑖 = 1 , … , 𝑘 − 𝜆𝑖(𝑡)𝑖 = 1 , … , 𝑘 , 𝑝1 + 𝑝2 + ⋯ + +𝑝𝑘 = 𝑛 

 Therefore, in this casethe general continuous solution of equation (5) has the form 

𝑥(𝑡) = 𝜆1
𝑡 (𝑡)𝜔1

1(𝑡) + 𝑡𝜆1
𝑡 (𝑡)𝜔2

1(𝑡) + ⋯ + 𝑡𝑝1−1𝜆1
𝑡 (𝑡)𝜔𝑝1

1 (𝑡) + ⋯ + 𝜆𝑘
𝑡 (𝑡)𝜔1

𝑘(𝑡) + 

+ ⋯ + 𝑡𝑝𝑘−1𝜆𝑘
𝑡 (𝑡)𝜔𝑝𝑘

𝑘 (𝑡), 

where , , are arbitrary continuous – periodic functions.𝜔1
𝑖 (𝑡) … , 𝜔𝑝𝑖

𝑖 (𝑡)𝑖 = 1 , … , 𝑘 , −  1. 
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