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Introduction 

Let's assume u(x) function [0,1] ,

  =  be a real-valued non-negative continuous 

function on the set and take zero value, i.e 0 ( )Ran u . K - operator
2 ( )L  in Gilbert space

2

2( , ) ( )k x s L   be a compact integral operator with a symmetric kernel. Some issues of quantum 

mechanics and statistical physics (see [1-3]).
2 ( )L  in hilbert space the following 

 
0 ,H H K= − (1.1) 

determined by the formula H is brought to study the spectrum of the operator, 

here 

0( )( ) ( ) ( ), ( )( ) ( , ) ( ) ( ).H f x u x f x Kf x k x s f s d s






= =   

In this K is a compact integral operator integral in the sense of Lebesgue and ( )  - an expression


is a Lebesgue measure on the set. From Weyl's theorem [4] about compact excitation H of the 

operator ( )ees H important spectrum ( )u x it follows that the function consists of a set of values, i.e

max( ) [0, ]ess H u = equality is appropriate, here
max max ( ).

x
u u x


=  

The operator in the form (1.1) is called the operator in the Friedrichs model. Operators in the 

Friedrichs model were studied in works [5-8, 11-14]. 

0H H K= − discrete spectrum of the operator I K− of the operator

( ), ( )Ran u   ‚ [17] The Fredholm determinant overlaps with zeros, here I - unit operator 

and
1

0( ) , ( ).K K H I Ran u  −= −  ‚  

of the Fredholm determinant 

( ) 0, ( )Ran u  =  ‚ (1.2) 

the study of the number of zeros is the main issue of the theory of operators in the Friedrichs model. 

If the following 
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0 0
lim , 0

( )

dx

u x





→ −



−  

is sufficiently small if limit has a finite value 0  for number [5]
0 0( ) ( ) [0, ]maxH K H u  − = =

equality is reasonable, i.e. small enough 0  at
0H H K = − the discrete spectrum of the operator 

will not exist. 

Using minimax and maximin principles [6], if K if the kernel of the integral operator is 

separated, then the discrete spectrum of the Friedrichs model (1.1) is finite. It follows from (1.1) that 

the discrete spectrum of the operator in the Friedrichs model is infinite K it follows that the kernel of 

the integral operator is in a non-separable form. The question of the infinity of eigenvalues outside 

the critical range of the one-dimensional model (1.1) was studied in works [6,7]. [8] considered the 

question of the existence of infinitely many eigenvalues of the multidimensional Friedrichs model 

and found necessary and sufficient conditions for the infiniteness of the discrete spectrum. 

In this review, we describe a method for studying the infinity of the discrete spectrum of 

operators in the Friedrichs model. The second section presents some auxiliary concepts and 

definitions derived from the minimax principle. In the third section (1.1), one criterion is proved, 

which ensures that the negative eigenvalues of the Friedrichs model are infinite. The fourth section 

shows that the discrete spectrum of one discrete Schrödinger operator is infinite. 

2. Several auxiliary concepts and definitions 

Let's assume H - separable hilbert space and :A →H H let the linearly bounded element be 

given an adjoint operator. 

For convenience ( )A , ( )ess A and ( )disc A with A we denote the spectrum, critical spectrum 

and discrete spectrum of the operator, respectively [16]. 

We also include the following definitions 

( ) { : ( )}, ( ) { : ( )}.min ess max essE A inf A E A sup A     =  =   

Here ( )minE A ( ( )maxE A number) number A is called the lower (upper) limit of the critical spectrum of 

the operator. 

 

If optional xH for ( , ) 0Ax x  if , then is linearly bounded integral A operator is called a positive 

operator and 0A  or0 A is written in the form 

(1.1) in the Friedrichs model
0H and K the following properties are relevant for operators.

0H

operator is optional to be positive x  at ( ) 0u x  the fulfillment of inequality is necessary and 

sufficient. K and for the integral operator to be positive, it is necessary and sufficient that each of its 

eigenvalues be negative. 

{ ( )}n nA 
join with A for the operator we define a bounded sequence of increasing real 

numbers constructed using the minimax principle [6]. Then each ( ),n A n  number A will be an 

eigenvalue of the operator and lim ( ) ( )n min
n

A E A
→

= equality is appropriate. 

  Lemma 2.1.[6] , :A B →H H - linearly bounded adjoint operators and A B let the 

inequality be appropriate. In that case ( ) ( ),n nA B n   Inequality is relevant here 

1,, 1

( ) sup inf ( , ), .k
x x LL dimL k

A Ax x k
= ⊥ = −

= 
H ‖ ‖

 

The following assertion follows from Lemma 2.1. 
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  Confirmation 2.1. H in hilbert space A and B for linear bounded adjoint operators A B

inequality and ( ) ( )min minE A E B= let equality be appropriate. If B If the discrete spectrum lying on 

the left side of the lower limit of the essential spectrum of the operator is infinite, then A The discrete 

spectrum lying to the left of the lower limit of the critical spectrum of the operator is also infinite. 

Suppose (1.1) is in the Friedrichs model K the integral operator is positive and K let the kernel 

of the integral operator be in non-separated form, i.e 

1

( , ) ( ) ( ),n n n

n

k x s a x s 


=

=  

here
2{ }k ka l  , 0,ka k  , each

ka number K the eigenvalue of the operator and{ ( )}k kx 
- 

system K of the operator
2 ( )L  in hilbert space

ka is a system of orthonormal eigenfunctions 

corresponding to the eigenvalues of 

K that the operator is positive

1

2K has a square root and 
1 1 1 1

2 2 2 2

1

( ) ( , ) ( ) , bu yerda ( , ) ( ) ( )n n n

n

K f x k x s f s ds k x s a x s



 


=

= =  

appears [10].
0H and for the operator

1 1

2 2
0 ( ) ( ) ( )H f x u x f x= equality is appropriate. 

also H (1.1) from the fact that the operator is self-adjoint ( )H  relationship arises. K and from 

the positivity of the operator
max( ) ( , )H u   = it follows that the equality holds, therefore H

discrete spectrum of the operator ( ,0)− lies in between. 

  Confirmation 2.2. H (1.1) Let the operator in the Friedrichs model have an infinite number 

of negative eigenvalues. If negative continuous ( ), 0 ( )v x Ran v function has a multiplication 

operator
0V for the operator

0 0H V if the condition is met, then 

1 0H V K= −  

operator also has an infinite number of negative eigenvalues. 

Proof.let's say
0 0H V let the inequality be appropriate. Then it's optional

2( ) ( )f x L   for

0 0(( ) , ) 0H V f f−  the inequality holds. From this 

0 0 0 0

0 0 1

0 (( ) , ) (( ) , )

((( ) ( )) , ) (( ) , )

H V f f H K K V f f

H K V K f f H H f f

 − = − + − =

= − − − = −
 

it follows that the relationship is appropriate. As a result
1H H the inequality becomes relevant. 

From this and Proposition 2.1
1H operator has infinitely many negative eigenvalues. 

Confirmation 2.3. H (1.1) Let the operator in the Friedrichs model have an infinite number 

of negative eigenvalues. If ( , )q x s uninucleateQ for a positive compact integral operatorQ K if the 

condition is appropriate then 

2 0H H Q= −  

operator also has an infinite number of negative eigenvalues. 

The proof of Proposition 2.3 is proved similar to the proof of Proposition 2.2. 

We consider the operator in the Friedrichs model as follows 

3 0 ,H V Q= −  



IJSSIR, Vol. 13, No. 04. April 2024 
 
 

 

 
48 

ISSN 2277-3630 (online), Published by International journal of Social Sciences & 
Interdisciplinary Research., under Volume: 13 Issue: 04 in April-2024 

https://www.gejournal.net/index.php/IJSSIR 

Copyright (c) 2024 Author (s). This is an open-access article distributed under the terms of 
Creative Commons Attribution License (CC BY). To view a copy of this license, 

visit https://creativecommons.org/licenses/by/4.0/ 

 

here
0V - continuous negative ( ),0 ( )v x Ran v function multiplication operator,Q - not separated

1

( , ) ( ) ( ), 0,n n n n

n

q x s b x s b n 


=

=   is a positive compact integral operator with a kernel. 

Theorem 2.1. H (1.1) Let the operator in the Friedrichs model have an infinite number of 

negative eigenvalues. If
0 0H V andQ K if the conditions are met, then

3 0H V Q= − operator also 

has an infinite number of negative eigenvalues. 

Proof.Let's assume
0 0H V andQ K let the inequalities be appropriate. Then it's optional 

by definition
2( ) ( )f x L   for

0 00 (( ) , )H V f f − and0 (( ) , )Q K f f − inequalities are 

relevant. From this 

0 0 0 00 (( ) , ) (( ) , ) ((( ) ( )) , )H V f f Q K f f H V Q K f f − + − = − + − =  

0 0 3 2((( ) ( )) , ) (( ) , ), ( ) ( )H K V Q f f H H f f f x L = − − − = −    

attitude is appropriate. As a result
3H H inequality arises. 

On the other hand
3( ) ( ) 0min minE H E H= = equality is appropriate. From this and Proposition 

2.1
3H it follows that the operator has infinitely many negative eigenvalues. 

3. About the sign of infinity of negative eigenvalues of the Friedrichs model 

in the Friedrichs model H the operator
2 ( )L    in the hilbert space we look as follows 

 
0 ,H H K= − (3.1) 

here 

0( )( , ) ( , ) ( , ), ( )( , ) ( , ; , ) ( , ) ( ) ( ).H f x y u x y f x y Kf x y k x y s t f s t d s d t

 

 
 

= =    

In this ( , ) ( , )u x y C     the function is nonnegative and0 ( )Ran u , 2 2

2( , ; , ) ( )k x y s t L    

and the core is symmetrical, i.e ( , ; , ) ( , ; , )k x y s t k s t x y= . 

let's say K operator is infinite
1 2 ... ..., 0,n n n       → →has positive eigenvalues and

{ ( , )}n ng x y 
system K let the operator be a sequence of orthonormal eigenfunctions corresponding 

to these eigenvalues. 

Optional 0  we define the following integral operators for 
1 1 1 1

2 2 2 2
0 0( ) ( ) , ( ) ( ),P K r K R K r   = =  

here
0 ( )r  -

0H the resolvent of the operator. *( ) ( )( ( ))P R R  = from equality ( )P  it follows that 

the operator is positive. Hf f= of Eq
0f with the solution ( )P  of the operator The fixed point is 

connected by the following relations. 
1 1

2 2
0 0 0( ) , .f r K K f  = = (3.2) 

Lemma 3.1.[9] 0  number H to be an eigenvalue of the operator 1 = number ( )P  it is 

necessary and sufficient that the operator has an eigenvalue. 

 

From Lemma 3.1 ( ) ( ( ) ), 0dimKer H I dimKer P I  − = −  equality follows. 

We introduce the following definition 

( ) , 0.
( , )

dxdy

u x y
 

 


 

 = 
−   
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Theorem 3.1.Assume that (3.1) is in the Friedrichs model ( , )u x y and ( , ; , )k x y s t for 

functions
0( , ) ( )u x y u y= and

0( , ; , ) ( , )k x y s t k x s= let the equalities be appropriate. If

0 0
lim ( )



→ −

 = + if the condition is appropriate then H (3.1) operator is infinite negative ,n n 

have eigenvalues and the eigenfunctions corresponding to these eigenvalues look like this 
0

0

( )
( , )

( )

n
n

n

g x
f x y

u y 
=

−
(3.3) 

here
1 2 1 2( , ,... ), ( , ,..., )x x x x y y y y = = . 

Proof. 0  being ( )P  of the operator ( , ; )p x z for the core
0( ; , ) ( ) ( , )p x z k x z = 

equality is appropriate. From this 

( ) ( )P K =  (3.4) 

equality follows. This is equality K characteristic function of the operator ( )P  means that it is also a 

characteristic function of the operator. 

From the condition of Theorem 3.1 ,n n  numbers K nonzero eigenvalues of the operator,

0

2( , ) ( ) ( ),n ng x y g x L n=    and functions K of the operator ,n n  will be eigenfunctions 

corresponding to eigenvalues, i.e
2 ( )L  is orthonormal in the Hilbert space 0{ }n ng 

there is a 

sequence of functions such that

1

( , ) ( ) ( )n n n

n

k x s g x g s


=

= equality is appropriate. 

Then from equality (3.4). 

( ) ( ),n n n   =   (3.5) 

numbers ( )P  it follows that the operator has eigenvalues. 

Now each n for the following 

( ) 1n  = (3.6) 

the equation is negative 0n  we show that it has a solution. For this, (3.5) is equivalent to equation 

(3.6) taking into account the equality
1

( )
n




 = we get the equation The following

2

0

( )
( ( ) )

dy

u y









 =
− derivative ( ,0)− since it is positive in the interval ( ) function( ,0)− is 

increasing and positive in the interval. Besides ( ) for the function
0 0

lim ( )



→ −

 = + and

lim ( ) 0



→−

 = relationships are appropriate. 

From this, equation (3.6) is assigned to each n negative for
n it follows that it has a 

solution. From Lemma 3.1, each ,n n  number H will be an eigenvalue of the operator. ( )P 

operator 0

1 2( , ) ( , ,..., ),n ng x y g x x x n=  from relation (3.2) because it has characteristic 

functions H of the operator ,n n  corresponding to the eigenvalues ( , )nf x y eigenfunctions are 

determined by equality (3.3). Theorem 3.1 is proved. 

2 1 1( )L   in hilbert space H we consider the operator as follows: 

0 ,H H K= − (3.7) 
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here 

0 ( , ) (1 ) ( , ),H f x y cos y f x y= −  

 

1 1

| |( , ) ( , ) , 0.a x sK f x y e f s t dsdt a−

 

=   (3.8) 

Confirmation 3.1. K (3.8) the integral operator is infinite
2 2

2
,

( )
n

n

a
n

n a


 
= − 

+ +

will have positive eigenvalues, where 0 , lim 0
2

n n
n


 

→
  = . K of the integral operator

n

eigenfunctions corresponding to eigenvalues
0( , ) ( ) ( )n ng x y x y =  is defined by equality, where

0( ) 1y  and 

( ) , ,n
n n n n n nx c cos x sin x n

a


     

 
= − + = + 

 
 

2 2 2

2 2

1
, .

1 2
1 1

2 4

n

n n n n

n

c n
sin sin

a a a

   



= 
   
+ + − −   

   

 

Proof. K to find the eigenvalue of the operator defined by the following equation
0K we find 

the eigenvalues of the operator: 
1

| |

0 2

0

( ) ( ) , 0, ( ) [0,1]a x sK x e s ds a x L  −=   (3.9) 

for this
0 ( ) ( ), 0K x x  =  we look at Eq. From this we create the following equation 

1

0

1 1
( ) ( ) ( ) .

x
ax as ax as

x
x e e s ds e e s ds  

 

− −= +   

These are two sides of the equation x by differentiating twice with respect to , we form the following 

second-order differential equation 

2 1
( ) ( ) 2 ( ).x a x a x  



 = + (3.10) 

(3.10) for the differential equation 

(0) (0), (1) (1)a a    = − = (3.11) 

the boundary condition is appropriate. 

We introduce the following definition 2 2 2a
a



 
= − + 

 
. Let's assume 0  . 

In that case ( ) ,x c cos x sin x c const
a


  

 
= + = 

− 
function (3.11) is a solution of differential 

equation (3.10) with boundary conditions, where - the solution of the following equation 
2 2

2 .
a

ctg
a






−
= (3.12) 
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The following0 , lim 0
2

n n
n


 

→
  = that satisfies the conditions{ }n n 

each of which can be found 

in sequence ,n nn n  = +  number will be the solution of equation (3.12). On the other hand

2 22
( ) ,n

n

a
a n n 


− − = +  from equality

0K operator is positive
n for eigenvalues

2 2

2
,

( )
n

n

a
n

n a


 
= − 

+ +
we form the equation. 

0K of the operator
n orthonormal eigenfunctions corresponding to eigenvalues 

( ) n
n n n nx c cos x sin x

a


  

 
= − + 

 
will appear here 

2 2 2

2 2

1
.

1 2
1 1

2 4

n

n n n n

n

c
sin sin

a a a

   



=
   
+ + − −   

   

 

Ravshanki,
0K (3.9) is an eigenvalue of the operator K (3.8) is also an eigenvalue of the operator and

0( , ) ( ) ( ),n ng x y x y n =   sequence of functions K is a sequence of orthonormal 

eigenfunctions of the operator. By Theorem 3.1 H (3.7) it follows that the operator has an infinite 

number of negative eigenvalues. 

Confirmation 3.2. H (3.7) for negative eigenvalues of the operator 21 1 ,n n n = − + 

equality is appropriate. 

Proof. H we find the negative eigenvalues of the operator. 0  being 

1 1 1

1

0
0

1
( )

( , ) ( ) 1 2

dxdy dy dy

u x y u y cos y


       

 = = = =
− − − − − −

     

we will have a relationship. (3.5) from Eq 2( )(2 ) , 0,n n   − − =   we form the equation of 

this equation 0  as it is 21 1 ,n n n = − +  the solution H operator will have eigenvalues. 

4.  discrete Schrödinger operator on a lattice 

Lattice two-particle Hamiltonian
2( )l  in the Gilbert space we define as follows [15] 

0 ,Q Q Q= −  

here is a function wrapper 0Q The general form of kinetic energy is: 

0 0

,

( )( , ) ( , ) ( , ),
k l

Q m n v m k n l k l 


= − −  

Q and potential energy 

1( )( , ) ( , ) ( , )Q m n v m n m n  =  

defined by Eq. Kinetic energy
0 1 2( , ) ( ) ( )v m n u m u n=  is given in the form here 

1 2

1 1 2 2

2 , agar 0, 2 , agar 0,

( ) , agar | | 1, , ( ) , agar | | 1,

0, agar { 1;0;1} 0, agar { 1;0;1}

a m a n

u m a m u n a n

m n

= = 
 

= = = = 
  −  − ‚ ‚
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and
1 2, 0a a  . We define the potential function with the following equation 

0,0

,0

1

0,

,

, agar 0,

, agar { }, 0, ,
( , ) ,

, agar 0, { }, ,

, agar { }, { }, , ,

p

q

p q

m n

m p n p
v m n

m n q q

m p n q p q









= =


  = 
= 

=   
     

 

 

here 2

, ,

, {0}

0, , {0},p q p q

p q

p q 
 

    . 

let's say ( , ] = −T let it be
2 2: ( ) ( )l L → F T T - is a Fourier substitution,  on 

the fence ( , )m n function T T defined in the set ( , )f x y reflects to the function, i.e 

,

1
( , ) ( , ) ( , ) ( [( , ) ( , )]),

2 p q

m n f x y p q exp i p x q y 
 

→ = +  

in thisQ Hamiltonian
2( )L T T passes to the following operator in space 

(2)

2 0 2( , ) ( , ) ( , ).H f x y H f x y K f x y= − (4.1) 

In this 
(2) (2)

0 0 2 2( , ) ( , ) ( , ), ( , ) ( , ; , ) ( , )H f x y u x y f x y K f x y k x y s t f s t dsdt= =  
T T

 

and
(2)

0 1 2( , ) 4 (1 )(1 )u x y a a cosx cosy= + + ,
(2)

0 ( , ) 0u    = ,
2 ( , ; , )k x y s t - the kernel will have a 

non-segregated view ie: 

(1) (1) (2) (2) (3) (3)

2 0 0

1 1 1

( , ; , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p q q q

p p q

k x y s t x y x s x s y t          
  

= = =

= + + + +    

(4) (4) (5) (5) (6) (6)

, , , , , ,

1 , 1 , 1

( ) ( ) ( , ) ( , ) ( , ) ( , )q q q p q p q p q p q p q p q

q p q p q

y t x y s t x y s t        
  

= = =

+ + +    

(7) (7) (8) (8)

, , , , , ,

, 1 , 1

( , ) ( , ) ( , ) ( , ),p q p q p q p q p q p q

p q p q

x y s t x y s t     
 

= =

+ +   

here 
2 2 2

0 0,0 ,0 0, , ,2 , 4 , 4 , 4 ;p p q q p q p q          = = = =  

(1) (2) (3) (4)

0

1
( , ) , ( ) , ( ) , ( ) , ( ) ,

2 2 2 2 2
p p q q

cospx sinpx cosqy sinqy
x y x x y y    

    
= = = = =  

(5) (6)

, ,( , ) , ( , ) ,p q p q

cospx cosqy cospx sinqy
x y x y 

 

 
= =  

(7) (8)

, ,( , ) , ( , ) .p q p q

sinpx cosqy sinpx sinqy
x y x y 

 

 
= =  

The following system of functions
2( )L T T it is not difficult to check that it is orthonormal in space 

(1) (2) (3) (4) (5) (6) (7) (8)

0 , , , ,, , , , , , , , , ,p p q q p q p q p q p q p q          (4.2) 

Besides 
(1) (1) (2) (2)

2 0 0 0 2 2( , ) ( , ), ( , ) ( , ), ( , ) ( , )p p p p p pK x y x y K h x y h x y K h x y h x y    = = =  
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(3) (3) (4) (4)

2 2( , ) ( , ), ( , ) ( , )q q q q q qK h x y h x y K h x y h x y = =  

(5) (5) (6) (6)

2 , , , 2 , , ,( , ) ( , ), ( , ) ( , )p q p q p q p q p q p qK x y x y K x y x y     = =  

(7) (7) (8) (8)

2 , , , 2 , , ,( , ) ( , ), ( , ) ( , )p q p q p q p q p q p qK x y x y K x y x y     = =  

equalities are appropriate, here (1) (1) (2) (2)

0 0( , ) ( ) ( ), ( , ) ( ) ( ),p p p ph x y x y h x y x y   =  =   

(3) (3) (4) (4)

0 0 0 0( , ) ( ) ( ), ( , ) ( ) ( ), ( ) ( ) 1q q q qh x y y x h x y y x y x     =  =  =  . 

Thus, every function in the system (4.2).
2K characteristic function of the operator, 

2 2 2

0 0,0 ,0 0, , ,2 , 4 , 4 , 4 ( , )p p q q p q p q p q          = = = =   

while the numbers
2K will be the eigenvalues of the operator. 

Theorem 4.1. 2H the discrete Schrödinger operator has an infinite number of negative 

eigenvalues. 

Proof. 2H The operator (4.1) is the operator in the Friedrichs model. let's say  - hip

1 28a a  be an arbitrary positive number satisfying the inequality. 

2( )L T T in the Friedrichs model in space 1H we define the operator as follows 

(1)
1 0 1,H H K= − (4.3) 

in this 
(1)

0 1 1( , ) (1 ) ( , ), ( , ) ( ; ) ( , ) ,H f x y cosy f x y K f x y k x s f s t dsdt= + =  
T T

 

here 

(1) (1) (2) (2)

1 0 0

1 1

( ; ) ( ) ( ) ( ) ( ) ( ).p p p p p p

p p

k x s x x s x s       
 

= =

= + +   

Ravshanki,
0 0

lim
1

dy

cosy → −
= +

+ −
T

equality is appropriate. Then by Theorem 3.1 1H (4.3) operator 

has an infinite number of negative eigenvalues. On the other hand,
(1) (2)

0 0H H and
2 1K K since the 

inequalities hold, the proof of Theorem 4.1 follows from Theorem 2.1. 
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