CALCULATION OF THE EXACT INTEGRAL BY THE MONTE CARLO METHOD
Keywords:
Definite integral, random variable, mathematical expectation, Chebyshev's theorem, statistics of experiments, surface bounded by lines, unit square, uniformly distributed, curved trapezoidal surface, random points.Abstract
The most important aspect of constructing Monte Carlo methods is to reduce the problem to the calculation of mathematical expectations. Since mathematical expectations are often simple integrals, the central place in the theory of the Monte Carlo method is occupied by methods of calculating integrals.
References
S. M. Ermakov. Method Monte-Carlo i smezhnye voprosy, izd. 2-e, Glavnaya redaktsiya fiziko-mathematicheskoy literatury izd-va "Nauka", 1975.
S. M. Ermakov. Statistical modeling. Chast II . Integrally. Integral equations. Saint Petersburg, 2004
ru . wikiversity . org / wiki /Programmirovanie_i_nauchnye_vychislenie_na_yazyke_ Python /§18
Jurayev VT PEDAGOGICAL SOFTWARE IN THE PREPARATION OF FUTURE TEACHERS OF INFORMATICS IN AN INNOVATIVE ENVIRONMENT //Theoretical & Applied Science. - 2020. - No. 4. - S. 182-185.
Jorayev VT The Role And Advantages Of Distance Courses In The Innovative Educational System //The American Journal of Social Science and Education Innovations. - 2020. - T. 2. – no. 10. – S. 434-439.
Mashrabovich, Mullaev Bakhtior. "The role of digital technologies in improving the quality of higher education." ACADEMICIA: An International Multidisciplinary Research Journal 12.9 (2022): 23-26.
Iqboljan S. USE OF INFORMATION TECHNOLOGIES IN THE EDUCATIONAL PROCESS OF PRIMARY CLASS //CREATIVE TEACHER. - 2022. - T. 2. – no. 20. - S. 137-140.
Aldashev I. ISPOLZOVAT SPETsIFIChESKIE SVOYSTVA KOMPUTERA, POZVOLYaYushchIE INDIVIDUALIZIROVAT UChEBNYY PROTsESS I OBRATITSya K PRINTsIPIALNO NOVYM POZNAVATELNYM SREDSTVAM //Ekonomika i sotsium. - 2020. - No. 6. - S. 337-340.
Aldashev I. Use the specific properties of the computer, allowing you to individualize the educational process and turn to fundamentally new cognitive means //Economy And Society. - 2020. - No. 6 (73).
Karimov ST, Shishkina EL Some methods of solution to the Cauchy problem for an inhomogeneous equation of hyperbolic type with a Bessel operator //Journal of Physics: Conference Series. - IOP Publishing, 2019. - T. 1203. - no. 1. – S. 012096.
FARMONOV Sh. R., MURATOV N. A. OPREDELENIE INTEGRIRUYushchEGO MNOJITELYa POLNOGO DIFFERENTsIALA VTOROGO PORYADKA //Aktualnye issledovaniya. - 2021. - S. 6.
FARMONOV Sh. R., JALOLKHUJAEV M. A. SRAVNITELNYY ANALYZ ANALITIChESKOGO I CHISLENNOGO RESHENIya ZADACHI DLYa URAVNENIya TEPLOPROVODNOSTI //Aktualnye issledovaniya. - 2021. - S. 6.
Tojiyev TK, Tashboltayev FU METHODOLOGY OF TEACHING INFORMATION TECHNOLOGIES WITH INNOVATIVE TECHNOLOGIES // Economics i society _ – 2021. – no. 4-1. - S. 414-416.
Tojiev T., Otakhanov A. Stochasticheskie metody approximatsii reshenia smeshannoi zadachi dlya obobshchennogo uravneniya neizotropicnoe diffuzii //Sovremennye nauchnye issledovaniya i razrabotki. - 2018. - T. 1. – no. 5. - S. 634-636.
Tojiev T., Ulikov Sh. Postroenie nesmeshchennaya i e-meshchyonnaya otsenki dlya reshenia zadachi Cauchy dlya obobshchennogo uravneniya neizotropicnoi diffuzii //Sovremennye nauchnye issledovaniya i razrabotki. - 2018. - T. 1. – no. 5. - S. 636-639.
Tojiev T., IBRAGIMOV Sh. STOKHASTICHESKIE METHODY APPROKSIMATsII DLYa RESHENIYA DIFFUZIONNYX ZADACh //Fundamentalnye i prikladnye nauchnye issledovaniya: aktualnye voprosy, dostizheniya i innovatsii. - 2018. - S. 13-15.
Tojiev T I. Sh., Rakhimov K. METODY POSTROENIya TsEPEY MARKOVA APPROXIMIRUYushchIE DIFFUZIONNYX ZADACh //TURIN POLYTECHNIC UNIVERSITY IN THE CITY OF TASHKENT. - 2017. - S. 156.
Otajonov U. A., Tojiev T. X. Широкополостные услуги TRIPLE PLAY (Internet, IPTV AND IP-telephony) //Obrazovanie i nauka v Rossii i za rubejom. – 2015. – no. 2. - S. 74-80.
Urinov AK, Khaydarov IU On a problem for parabolic-hyperbolic type equation with non-smooth line of type change //Abstracts, 6th international ISAAC congress, Ankara, Turkey. - 2007. - S. 105.
Khaydarov IU, Salakhitdinov MS, Urinov AK An Extremum Principle for a Class of Hyperbolic Type Equations and for Operators Connected with Them //Modern Aspects of the Theory of Partial Differential Equations. - Springer, Basel, 2011. - S. 211-231.
Zunnunov R. T., Khaidarov I. U. Kraevaya zadacha so smeshcheniem dlya obobshchennogo uravneniya Trikomi so spectralnym parametrom v neogranichennoy oblasti //Vestnik KRAUNTs. Physical and mathematical science. - 2020. - T. 32. - no. 3. - S. 55-64.
Khaydarov IU A problem with non-local conditions for a mixed parabolic-hyperbolic equation with two lines of changing type //INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT, ENGINEERING AND SOCIAL SCIENCES ISSN: 2349-7793 Impact Factor: 6.876. - 2022. - T. 16. – no. 10. – S. 22-30.
Ismailov A. THE DARBOUX PROBLEM FOR THE NONHOMOGENEOUS GENERALIZED EULER-POISSONDARBOUX EQUATION //Norwegian Journal of Development of the International Science. – 2022. – no. 91. - S. 24-33.
Urinov AK, Ismailov AI, Mamanazarov AO A Cauchy-Goursat problem for the generalized Euler-Poisson-Darboux equation //Contemp. Anal. Appl. Math. - 2016. - T. 4.
Urinov A. _ K. , Ismailov A. _ I. _ OB ODNOM ANALOGUE ZADACHI IF DLYa OBOBshchENNOGO Uravnenia EULERA – POISSONA – DARBU ON AN ANALOGUE OF THE GOURSAT PROBLEM FOR THE GENERALIZED // BBK B16+ B192 D 503. – S . 274.
Urinov A. K., Ismailov A. I. Zadacha s boundary conditions and parallel characteristics for the general Euler-Poisson-Darbou equation //UZBEKISTAN MATHEMATICS JOURNAL. - S. 132.
Ismailov AI, Mamanazarov AO, Urinov AK Darboux problem for the generalized Euler–Poisson–Darboux equation //Ukrains' kyi Matematychnyi Zhurnal. - 2017. - T. 69. - no. 1. – S. 52-70.
Usmanov B., Rakhimov Q., Akhmedov A. The problem of takeoff and landing of a hereditarily deformable aircraft in a turbulent atmosphere // Construction Mechanics, Hydraulics & Water Resources Engineering, CONMECHYDRO 2021 AS, 7 - 9 September 2021.
16. Usmanov B.Sh., Rakhimov K. O., Modeling and analysis of numerical research problems of linear and nonlinear successive-deformation systems in the Matlab environment // Problemy vychislitelnoy i praktanoy matematiki. - 2021. - No. 4(34). - p. 50-59.
17. Karimov, Sh. T. "New Properties of Generalized Erdélyi–Kober Operator With Application", Dokl. Acad. Nauk Uzbek Republic, No. 5 , 11–13 (2014) [in Russian].
18. Karimov, Sh. T. "Multidimensional Generalized Erdélyi–Kober Operator and its Application to Solving Cauchy Problems for Differential Equations With Singular Coefficients", Fract. Calc. Appl. Anal. 18 , No. 4, 845–861 (2015).
19. Sh.T. Karimov, Solution of a Cauchy problem for multidimensional hyperbolic equations with singular coefficients by the method of fractional integrals (in Russian). Doc. Acad. Nauk R. Uz. No. 1 (2013), 11-13.
20. Sh.T. Karimov, On a method of solution of Cauchy problem for the generalized Euler-Poisson-Darboux equation (in Russian). Uzbek Mathematical Journal No. 3 (2013), 57-69.
21. AK Urinov, ST Karimov, Solution of the Cauchy Problem for generalized Euler-Poisson-Darboux equation by the method of fractional integrals. In: Progress in Partial Differential Equations, Springer International Publishing (2013), 321-337.
22. Karimov Sh.T. The Erdei-Kobera multivariate operator and its application to the Cauchy solution for three-dimensional hyperbolic equations with singular coefficients //Uzb. sorry journal. 2013. No. 1. -C.70-80.
23. Karimov K.T. Zadacha Dirichle for three-dimensional elliptic equations with two singular coefficients. Uzbek mathematical journal. -Tashkent, 2017. -#1. -S.96- 105.
24. Sh.T. Karimov, Solution of a Cauchy problem for multidimensional hyperbolic equations with singular coefficients by the method of fractional integrals, Dokl. Acad. Nauk R. Uz. 1 (2013) 11–13 (in Russian).
25. Karimov Sh.T, Yulbarsov Kha.A. Gursa's analog problem for one pseudoparabolic equation of the third order // Material scientific conference "Actual problems of stochastic analysis". Tashkent. 2021. S. 309–311
26. Karimov Sh.T. Solving the problem of Cauchy for multidimensional hyperbolic equations with singular coefficients by the method of small integrals. // Doklady AN RUz, 2013, No. 1, p. 11-13.
27. Karimov Sh.T. Ob odnom methode sheniya kraevyx zadach dlya mongomernyx parabolicheskikh euravneniy s operatorami Besselya. // Trudy mejd. Nauch. conf. Differential equations and intermediate problems, t.1, -Ufa, RITs BashGU, 2013, p. 54-59.
28. Sh. T. Karimov, ``On some generalizations of properties of the Lowndes operator and their applications to partial differential equations of higher order,'' Philomat 32 , 873–883 (2018).
Abdunabiyevna K. D., Mansur B. SOLVING ALGEBRAIC PROBLEMS USING THE VECTOR CONCEPT //INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT, ENGINEERING AND SOCIAL SCIENCES ISSN: 2349-7793 Impact Factor: 6.876. – 2022. – Т. 16. – №. 10. – С. 49-59.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 GEJournals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.