RESULTS OF THE MINIMAX PRINCIPLE FOR SELF-ADJOINT OPERATORS IN THE FRIEDRICHS MODEL
Keywords:
Friedrichs model, self-adjoint operator, spectrum, critical spectrum, discrete spectrum, non-separated kernel.Abstract
The discrete spectrum of self-adjoint operators in the Friedrichs model is studied. A sufficient condition for the existence of an infinite number of eigenvalues of the Friedrichs model is given. It is proved that the negative eigenvalues of the discrete Schrödinger operator are infinite.
References
Faddeev L.D. O model of Friedrichs and the theory of spatial noninterruptive spectrum. V. kn.: Trudy MI AN SSSR, T.73, M.: Nauka, 1964, S. 292-313.
Lakaev S.N., Minlos R.A. O svyazannyx sostoyaniyax clusternogo operatora TMF. 1979. T.39. #1. S. 83-93.
Minlos R.A., Sinai Ya.G. Issledovanie spektrov stochasticheskikh operatorov, voznikayushchix v reshetchatyx modeliax gasa. TMF. 1970. T.2. #2. S. 230-243.
Reid M., Simon B. Methods of modern mathematical physics, Volume 4: Analysis of operators. -- M.: Mir, 1982.
Eshkabilov Yu. X. Ob odnom operatora v modeli Fridrikhsa, UzMJ, 1999, No. 3, str. 85-93.
Eshkabilov Yu. X. O beskonechnosti discretnogo spectra operatorov v model Friedrichsa. Mat. trudy. 2011. T.14. #1. S. 195-211.
Eshkabilov Yu. X. O beskonechnosti chisla otritsatelnyx sobstvennyx znacheniy model Friedrichsa. Nanosystem: physics, chemistry, mathematics, 2012, 3(6), S. 16-24.
Eshkabilov Yu. Kh., Kulturaev D. J. On the infinity of the discrete spectrum of operators and the multidimensional model of Friedrichs. News of UzMU, 2014, No. 1.
Abdullaev J. I. Sobstvennye znacheniya dvukhchastichnogo operatora Schrödinger na dvumernoy reshetke. Uzbek. matem. journal., 2005, No. 1, S. 3-11.
Lusternik L. A., Sobolev V. I. Elementy functional analysis. Moscow: Nauka. 1965.
Imamkulov S. A., Lakaev S. N. Discrete spectrum one-dimensional model Friedrichsha. Dokl. AN UzSSSR. 1988. #7. S. 9-11.
Lakaev S.N. O discrete spectrum obobshchennoy model Friedrichs. Doc. AN UzSSR. 1979. No. 4. S. 9-10.
Lakaev S. N. Some spectral properties of the general model of Friedrichsha. Tr.seminar N.G.Petrovsky. 1986. No. 11. S. 210-238.
Minlos RA, Abdullaev JI, Lakaev SN On the Spectral Properties of the Matrix-valued Friedrichs Model Many-Particle Hamiltonians:
Spectrum and Scattering. Editor: //Advances in Soviet Mathematics, 1991, 5.
Zhukov Yu. V. Theorem Iorio-O'Carroll for N-partial lattice Hamiltonian // TMF, 107:1, 1996, 75-85.
Reid M., Simon B. Methods of modern mathematical physics - T.1, Functional analysis. - M.; Mir, 1977.
Trichomi F. Dj. Integral equations. IL, M., 1960.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 GEJournals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.