RESULTS OF THE MINIMAX PRINCIPLE FOR SELF-ADJOINT OPERATORS IN THE FRIEDRICHS MODEL

Authors

  • Davron Kulturayev Jurayevich senior teacher, Termiz State Pedagogical Institute Uzbekistan, Termiz city, Islam Karimov street, 288b
  • Bakhriddin Oltiyev Jurayevich teacher, Termiz State Pedagogical Institute Uzbekistan, Termiz city, Islam Karimov street, 288b

Keywords:

Friedrichs model, self-adjoint operator, spectrum, critical spectrum, discrete spectrum, non-separated kernel.

Abstract

The discrete spectrum of self-adjoint operators in the Friedrichs model is studied. A sufficient condition for the existence of an infinite number of eigenvalues ​​of the Friedrichs model is given. It is proved that the negative eigenvalues ​​of the discrete Schrödinger operator are infinite.

References

Faddeev L.D. O model of Friedrichs and the theory of spatial noninterruptive spectrum. V. kn.: Trudy MI AN SSSR, T.73, M.: Nauka, 1964, S. 292-313.

Lakaev S.N., Minlos R.A. O svyazannyx sostoyaniyax clusternogo operatora TMF. 1979. T.39. #1. S. 83-93.

Minlos R.A., Sinai Ya.G. Issledovanie spektrov stochasticheskikh operatorov, voznikayushchix v reshetchatyx modeliax gasa. TMF. 1970. T.2. #2. S. 230-243.

Reid M., Simon B. Methods of modern mathematical physics, Volume 4: Analysis of operators. -- M.: Mir, 1982.

Eshkabilov Yu. X. Ob odnom operatora v modeli Fridrikhsa, UzMJ, 1999, No. 3, str. 85-93.

Eshkabilov Yu. X. O beskonechnosti discretnogo spectra operatorov v model Friedrichsa. Mat. trudy. 2011. T.14. #1. S. 195-211.

Eshkabilov Yu. X. O beskonechnosti chisla otritsatelnyx sobstvennyx znacheniy model Friedrichsa. Nanosystem: physics, chemistry, mathematics, 2012, 3(6), S. 16-24.

Eshkabilov Yu. Kh., Kulturaev D. J. On the infinity of the discrete spectrum of operators and the multidimensional model of Friedrichs. News of UzMU, 2014, No. 1.

Abdullaev J. I. Sobstvennye znacheniya dvukhchastichnogo operatora Schrödinger na dvumernoy reshetke. Uzbek. matem. journal., 2005, No. 1, S. 3-11.

Lusternik L. A., Sobolev V. I. Elementy functional analysis. Moscow: Nauka. 1965.

Imamkulov S. A., Lakaev S. N. Discrete spectrum one-dimensional model Friedrichsha. Dokl. AN UzSSSR. 1988. #7. S. 9-11.

Lakaev S.N. O discrete spectrum obobshchennoy model Friedrichs. Doc. AN UzSSR. 1979. No. 4. S. 9-10.

Lakaev S. N. Some spectral properties of the general model of Friedrichsha. Tr.seminar N.G.Petrovsky. 1986. No. 11. S. 210-238.

Minlos RA, Abdullaev JI, Lakaev SN On the Spectral Properties of the Matrix-valued Friedrichs Model Many-Particle Hamiltonians:

Spectrum and Scattering. Editor: //Advances in Soviet Mathematics, 1991, 5.

Zhukov Yu. V. Theorem Iorio-O'Carroll for N-partial lattice Hamiltonian // TMF, 107:1, 1996, 75-85.

Reid M., Simon B. Methods of modern mathematical physics - T.1, Functional analysis. - M.; Mir, 1977.

Trichomi F. Dj. Integral equations. IL, M., 1960.

Downloads

Published

2024-04-30

How to Cite

Davron Kulturayev Jurayevich, & Bakhriddin Oltiyev Jurayevich. (2024). RESULTS OF THE MINIMAX PRINCIPLE FOR SELF-ADJOINT OPERATORS IN THE FRIEDRICHS MODEL. INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact Factor: 8.036, 13(04), 45–54. Retrieved from https://gejournal.net/index.php/IJSSIR/article/view/2388